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Twist defects in helical sonic structures

C. Oldano, J. A. Reyes,* and S. Ponti
Dipartimento di Fisica, Politecnico di Torino and Istituto Nazionale per la Fisica della Materia (INFM), Corso Duca degli Abruzzi

10129 Torino, Italy
~Received 20 December 2002; published 27 May 2003!

We analyze theoretically both the acoustic wave propagation in periodic media made of anisotropic materials
whose stiffness tensor is uniformly rotating along a given axisx3 and the defect mode produced by twisting
aboutx3 one part of the helical structure with respect to the other. Within the Bragg band of the periodic
structure, the twist defect gives rise to a resonant mode that is a superposition of two standing waves: one
localized with exp(2gux3u) dependence centered at the defect and the other extended over the whole sample.
The ratio between the amplitudes of the localized and nonlocalized waves depends sharply on both the twist
angle and the elastic anisotropy, and can assume huge values. The defect mode and the resonance frequencyv0

are defined by fully analytical and very simple expressions. Finally, we discuss how aroundv0, a finite sample
acts as a frequency filter for circularly polarized shear waves, whose bandwidth can be changed by many
orders of magnitude by varying the sample thickness, the twist angle, or the elastic anisotropy.

DOI: 10.1103/PhysRevE.67.056624 PACS number~s!: 42.70.Qs, 61.30.2v, 62.65.1k
al
th
ns
eli
d
fr
p

w
h

ap
is
al
e

al

de

fa
c

an
le
an
e

de
ng
.

ica

iu
s

dis-
he
ec-

e-
ro-

is
ent

e
es
of

ace-

di-

-
o

I. INTRODUCTION

The unique optical properties of cholesteric liquid cryst
have been the object of intense research during more
one century. In particular, fully analytic and exact solutio
for the electromagnetic wave propagation along the h
axis were independently found by Kats and Nityanan
@1,2#. These expressions exhibit the presence of a large
quency gap, where two of the four eigenwaves are nonpro
gating. The advances in deposition techniques have allo
to fabricate solid crystals having the same structure as c
lesteric liquid crystals and to insert defects for photonic
plications. The defects can be generated by inserting an
tropic layer in the middle of a cholesteric liquid cryst
sample between planes orthogonal to the periodicity dir
tion x3 @3# and similarly in solid crystals@4,5#, or more sim-
ply by rotating aboutx3 one of the two half parts of the
sample with respect to the other~twist defects@6–9#!.

Solid helical structures made of anisotropic materi
whose elastic tensor is uniformly rotating aboutx3 are also
of interest for sonic applications. Ideal structures without
fects have been largely treated@10–16#, whereas helical
structures with defects received smaller attention so
@17,18#. The aim of this paper is the study of the defe
modes produced by a twist defect in helical structures
their effects on the acoustical properties of finite samp
Since in helical media the wave equation admits exact
fully analytical solutions, such structures represent an id
tool for the exact description and the study of defect mo
in samples with twist defects, yielding a full understandi
of their causes. This paper is organized as follows. In Sec
we recall the basic equations for axial propagation in hel
structures given in Refs.@10,11#. In Sec. III, we discuss the
properties of the shear eigenmodes in a periodic med
without defects, by considering helical structures who
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shear~transversal! and compressional~longitudinal! waves
are decoupled. The properties of the defect mode are
cussed in Sec. IV, and finally in Sec. V the influence of t
presence of the twist defect on the transmission and refl
tion properties of finite samples is examined.

II. EIGENMODES FOR AXIAL PROPAGATION:
BASIC EQUATIONS

Let us first consider solid helical structures without d
fects, made of anisotropic materials whose elastic tensor
tates uniformly about a given axisx3, thus describing a helix
with pitch p. For axial propagation of the elastic wave it
convenient to express the components of the displacem
vector ud and of the stress tensors in a framex1 ,x2 ,x3
rotating solidly with the material structure. In this frame th
componentsl i jmn of the stiffness tensor have constant valu
and the propagation equation for monochromatic fields
frequencyV, with a time dependence exp(2iVt), can be
written as

]3a~x3!5 iqHa~x3!, ~1!

whereH is a constant 636 matrix, q52p/p, a is the six-
vector whose elements are the components of the displ
ment vectorud and the componentss13, s23, s33 of the
stress tensor. It is convenient to introduce the following
mensionless quantities:

u5qud , si5s i3 /h0 ,

and to define the matrixH as

H[S Huu Hus

Hsu Hss
D ,

with.
©2003 The American Physical Society24-1
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iH uu[ iH ss[S 0 1 0

21 0 0

0 0 0
D ,

iH us[S e1 0 e8

0 e2 e9

e8 e9 e3

D , iH su[2v2S 1 0 0

0 1 0

0 0 1
D ,

~2!

wherei 51,2,3, the parameterh0 is a suitable average of th
elastic compliance, the elements of the submatrixHus are
dimensionless quantities~such quantities will be defined be
low! and v is a reduced, dimensionless, angular frequen
given by the equation

v[VArh0, ~3!

wherer is the density of the medium. The propagation eq
tion admits six independent solutions of the ty
b jexp(iqkjx3), where the state vectorsb j and the reduced
wave vectorskj are the eigenvectors and eigenvalues ofH,
respectively, which define the eigenmodes of the acou
field. It is worthwhile to remind that the simplicity of suc
plane wave solutions is due to the use of the rotating fra
representation. In the laboratory frame the eigenmodes
quire the form of Bloch waves which can be expressed a
superposition of plane waves having reduced wave vec
(k11)x̂3 , kx̂3 , (k21)x̂3, as expected for periodic media.

The properties of the eigenmodes and the shape of
dispersion curves depend on the material parameters, w
appear in the submatrixHus . Let us restrict our analysis to
the case

e85e950, ~4!

in which the eigenvalue equation splits into two independ
equations, since the longitudinal componentsu3 , s3 are de-
coupled from the transversal ones. The equation contain
u3 and s3 describes compressional waves, while the ot
represents shear waves and can be written as

S 0 1 e1 0

21 0 0 e2

2v2 0 0 1

0 2v2 21 0

D S u1

u2

s1

s2

D 5 ikS u1

u2

s1

s2

D . ~5!

If e1Þe2, which means anisotropic behavior of the structu
under shear deformation, the transversal components
coupled. In this paper we shall study the solutions of Eq.~5!,
which are very similar to those of Maxwell’s equations f
axial propagation of the electromagnetic fields in choleste
liquid crystals. For such a reason the helical structures s
fying Eq. ~4! have been called cholestericlike in Ref.@11#.

Equation~4! is satisfied for a medium havingx1 ,x2 ,x3 as
symmetry axes~we remind that the periodic medium appea
as homogeneous in the rotating frame!. If the medium has
05662
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the same symmetries as hexagonal crystals with the cry
lographic axisz parallel tox1, then

e1
215h0lxzxz, e2

215h0lxyxy, e3
215h0lxxxx. ~6!

By considering lossless media and by setting

h0[
1

2

lxzxz1lxyxy

lxzxzlxyxy
, ~7!

the relatione11e252 is fulfilled, and we can take

e1511ea , e2512ea , ~8!

whereea5 (e12e2)/2 is the anisotropy parameter of intere
for cholestericlike structures. However, it must be observ
that in lossy media the relatione11e252 is not satisfied
because the imaginary parts ofe1 ande2 do not add to zero.

Equation~4! is no longer valid if the crystallographic axi
z is obliquely oriented with respect to the helix axisx3, and
the structure turns out to be smecticlike. The equations
fining the parameterse1 , e2 , e3 , e8, e9 for smecticlike
structures, which are not considered here, are given in R
@11# with a slightly different symbolism. Propagation equ
tions equivalent to Eqs.~1! and~5! have also been found an
discussed in Ref.@10#.

III. PROPERTIES OF THE SHEAR EIGENWAVES IN
CHOLESTERICLIKE STRUCTURES

The eigenvalues and eigenvectors of Eq.~5! are very eas-
ily found @10,11#. They are given by the equations

k2511v2
~e11e2!

2
6

1

2
A8~e11e2!v21~e12e2!2v4,

~9!

e1s15 iku12u2 , e2s25 iku21u1 , ~10!

u2

u1
5

e1e2v22e12e2k2

ik~e11e2!
. ~11!

For reale values, namely, if the medium is lossless a
locally achiral, the eigenvalueskj are real and given by
6k1 , 6k2 except for values ofv within the frequency gap,
wherek1 is purely imaginary. The dispersion relations of th
four transversal eigenmodes 11, 12, 21, 22 and of the
longitudinal ones 31 and 32 are plotted in Fig. 1. Notice tha
only the modes 1 display a frequency gap placed betweenv1
andv2, where

v1
251/e1 , v2

251/e2 .

In what follows we shall assumeea.0 and as a consequenc
v2.v1.

Before concluding this section, let us stress some featu
of the eigenmodes which will be useful in our analys
Equations~11! and~10! show that the ratiosu2 /u1 ands2 /s1
are purely imaginary for real values ofk so that the waves
propagating without attenuation are elliptically polarized.
contrast, these ratios are real for imaginaryk and as a result
4-2
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the exponentially attenuated solutions, corresponding
standing waves, are linearly polarized.

At the upper edge of the gap the plane vectorsu1 andu2

of the modes 11 and 12 are parallel to the axisx2 corre-
sponding to the minimum value ofe. By suitably normaliz-
ing the eigenvectors ofH, u1 andu2 become coincident for
v5v2. By decreasingv from v2 to v1, these vectors rotate
monotonically by an anglep/2 with opposite senses of rota
tion, so that they become antiparallel at the lower edge of
gap. Similarly, the vectorss1 and s2 are parallel tox1 for
v5v2, and rotate byp/2 becoming antiparallel forv
5v1. Such properties of the nonpropagating solutions are
great importance for the search of the possible locali
modes within the frequency gap, as we shall see the foll
ing section, which defines the defect mode in lossless me

IV. TWIST DEFECT AND DEFECT MODE

Let us now consider two identical semi-infinite choleste
clike structures filling the half spacesx3,0 andx3.0, re-
spectively, the second one rotated by an angle 2f with re-
spect to the first one. The eigenvectors at the left and r
hand sides of the discontinuity plane will be indicated w
the lettersa andb, respectively.

For the shear modes 1 and 2 the componentsu3 and s3
are identically zero. The vectorsa andb will be written as
four-vectors defined by the couples of plane vectorsua , sa

FIG. 1. Dispersion curves in the rotating frame for helical stru
tures without coupling between shear and compressional defo
tions. The solid and dashed lines refer to the real parts ofk for
forward and backward modes, respectively; the dash-dotted
dotted lines to the corresponding imaginary parts 16 and 26 are
shear modes and 36 compressional modes. In the laboratory fram
the curves 36 are unchanged. The other ones are shifted along
horizontal axis by11 or 21 and a new plane wave compone
with a different value ofk appears, because the eigenmodes in
riodic media are Bloch waves. In the frequency range wherek is
purely imaginary the modes 16 represent surface standing wave
In the presence of coupling between shear and compress
waves, a new frequency gap appears around the intersection
of the curves 11, 32 and 12, 31.
05662
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andub , sb , respectively. For each eigenmode, the plane v
tors u, s defining b are obviously rotated by an angle 2f
with respect to those defininga.

In order to define the properties of the defect mod
within the frequency gap, it is important to consider t
eigenmodesa1

2 andb1
1 . As a consequence of the properti

discussed in the preceding section, the vectorsua
2 and ub

1

make an angle 2f for v5v2, that is, at the upper edge o
the frequency gap. By decreasingv, they rotate in opposite
senses, and become coincident for a given anglefu , corre-
sponding to a well defined frequencyvu . Similarly, the vec-
tors sa

2 andsb
1 become coincident at a frequencyv5vs . If

vs5vu , a physically acceptable solution is given by

f ~x3!5 f a~x3!Q~2x3!1 f b~x3!Q~x3!, ~12!

where

f a~x3!5a1
2exp~gx3!, f b~x3!5b1

1exp~2gx3!,
~13!

g5qk1 andQ(x) is the Heaviside step function. In fact, th
function f (x3) satisfies the propagation equation and is co
tinuous at the defect plane, in agreement with the requ
ment of continuity of the vectorsu ands. The functionf (x3)
defines a localized defect mode occurring at the freque
vu5vs , as it is evident.

For the helical medium studied here, the functionsvu(f)
and vs(f) are very close but not coincident, as shown
Fig. 2 where the inverse functionsfu(v) and fs(v) are
plotted. Hence, no physically acceptable solution definin
localized mode exists, since it is impossible to fulfill th
requirements of continuity for both vectorsu and s. How-
ever, a solution which is continuous at the site defect can

-
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nd

e

-

al
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FIG. 2. Anglesf i with i 5u,s, defining the direction of the
vectorsu ands for the modes 16 within the frequency gap forea

50.2: fu5tan21(u2 /u1) ~continuous line!, fs52tan21(s1 /s2)
~dashed line!. Notice thatfu andfs are defined in such a way tha
at the gap edges, wherefu5fs , the vectorsu ands are orthogonal.
The nonorthogonality of these vectors within the gap influen
strongly the shape and the width of the defect mode.
4-3
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found by adding to each one of the functionsf a and f b a
linear combination of the eigenmodes 21 and 22. The new
function f (x3) contains four free parameters, which allow
satisfy the four boundary conditions for the plane vectoru
and s. Symmetry considerations and physical intuition su
gest that the amplitudes of the counterpropagating modes1

and 22 have the same modulus leading as a result to a st
ing wave. Indeed, for anyv within the frequency gap a
solution exists which can be expressed by the follow
functions:

f a5Ca1
2exp~gx3!1exp~2 id!a2

1exp~ iqk2x3!

1exp~ id!a2
2exp~2 iqk2x3!,

f b5Cb1
1exp~2gx3!1exp~ id!b2

1exp~ iqk2x3!

1exp~2 id!b2
2exp~2 ik2x3!, ~14!

where the phase angled depends on the normalization of th
eigenvectors. The eigenvectorsa2

6 and b2
6 have been nor-

malized to unit power fluxP, which is given by

P5b†Mb, M5
1

2 S 0 0 2 iv 0

0 0 0 2 iv

iv 0 0 0

0 iv 0 0

D , ~15!

where the superscript † denotes the Hermitian conjugat
The eigenmodea1

2 , which represents a standing wave wi
P50, has been normalized by setting

u~a1
1!†Ma1

2u51, ~16!

and similarly forb1
1 . The amplitudeC of the localized com-

ponent of the defect mode depends strongly onv. In fact,
the functionC(v), depicted in Fig. 3, exhibits an enhance
maximum at a frequencyv5v0 depending on the twis

FIG. 3. Amplitude ratioC(v) between the localized and th
nonlocalized component of the defect mode for a twist defect w
twist angle 2f5p/2 and anisotropy parameterea50.1.
05662
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angle 2f. For a given value off, v0 is located between the
frequenciesvu andvs . A monotonic dependence ofv0 on
f has already been evidenced in Ref.@17#, which gives the
transmittance of samples with differentf values. We have
found a fully analytic equation relatingv0 andf, which can
be written as

2f5p2fu2fs , ~17!

where

fu5tan21S e1e2v0
22e12e2k1

2

2ik1
D ,

fs52tan21S e2

e1

ik12tanfu

ik1tanfu11D . ~18!

Herek1 is the function ofv0 defined by the dispersion rela
tion ~9!. The maximum valueC05C(v0) of the function
C(v) depends on the twist angle 2f and on the elastic an
isotropy ea , as shown in Figs. 4 and 5, respectively. O

h

FIG. 4. Maximum value ofC(v), C05C(v0), as a function of
the twist angle 2f for ea50.2.

FIG. 5. C0 versusea for a twist angle 2f5p/2.
4-4
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TWIST DEFECTS IN HELICAL SONIC STRUCTURES PHYSICAL REVIEW E67, 056624 ~2003!
may notice thatC0 increases dramatically whenv0 ap-
proaches to the gap edgesv1 and v2, or when the elastic
anisotropyea decreases.

V. PROPERTIES OF SAMPLES WITH TWIST DEFECTS

A finite sample between the planesx352 l a andx35 l b ,
with a twist defect located atx350, behaves as a resona
cavity whose properties depend onl a , l b , f, andea . TheQ
factor and the phonon dwell time can reach very high val
by appropriately choosing such parameters.

In order to analyze the properties of the sample, it is c
venient to express the acoustic fields within and outside
sample as a superposition of eigenmodes so that we
make use of the scattering-matrix formalism. We consi
first the scattering matrix associated with the defect plane
can be defined by the relation

aout5Sainc , ~19!

whereaout andainc are four-vectors whose elements are t
amplitudes of the outgoing and incoming eigenwaves, wh
will be ordered as follows:b1

1 , b2
1 , a1

2 , a2
2 anda1

1 , a2
1 ,

b1
2 , b2

2 , respectively. Thus, the elementS11 provides the
amplitude of the modeb1

1 generated by an incident sign
entering from the left hand side of the defect plane and c
taining the unit amplitude modea1

1 . In general, the ele-
mentsSi j with j 51,2 furnish the transmission properties
the defect plane wheni 51,2 and the reflection propertie
when i 53,4, for waves coming from the left hand side. T
quantitiesuSi j u are plotted in Fig. 6 as a function ofv. The
upper curves refer to a lossless medium,~a0! refers to the
standing waves 1, giving its transmission (i 5 j 51) and re-
flection (i 53, j 51) properties,~c0! refers to the propagat
ing waves 2,~b0! to the mode exchanging. Note that the tw
curves plotted in~a0! are practically coincident and reach
remarkable maximum at the resonant frequencyv0, showing
that for v5v0 the wave 11 gives rise to new transmitte
and reflected waves 16 with huge amplitude. A similar be
havior is displayed by the curves plotted in~b0!, but here the
maximum is less pronounced. The dashed curve in~c0!
shows that the defect plane reflects totally the propaga
eigenmode 21 at the frequencyv0.

The other curves (ai ), (bi ), and (ci ) ( i 51,2) plotted in
Fig. 6 are similarly defined, but they refer to lossy med
One may notice that a very small imaginary part ofe1 ande2
has dramatic effects on the scattering properties of the de
plane. The dissipation also changes the properties of
eigenmodes 16, which become elliptically polarized becaus
in Eqs. ~10! and ~11! the reduced eigenvaluek is no more
purely imaginary. Further, also the eigenmodes 26 become
exponentially attenuated, a fact that can greatly change
properties of thick samples. However, the optical proper
of dissipative samples with a twist defect are dominated
the effects shown in Fig. 6. A satisfactory theory includi
dissipation becomes very involved. Therefore in the follo
ing only nondissipative samples will be considered.

The curves plotted in Fig. 6 imply that any incident wa
on the discontinuity plane generates a defect mode with la
05662
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amplitude and that the exponentially decaying eigenwa
are much more efficient than the propagating ones in ge
ating the resonant defect mode. However, it should be
served that the attenuated wave 11 is originated at the
sample boundaryz52 l a and vanishes before reaching th
defect site ifl a@ l c , where

l c5~qk1!215
p

2puk1u

is its characteristic length. On the basis of the above con
erations, it is now quite easy to understand the reflection
transmission properties of finite samples without dissipati
We shall consider a sample withl a5 l b5 l , immersed in an
isotropic medium. The polarization properties of the tran
mitted and reflected waves at the boundary planesz52 l and
z5 l depend on the impedance mismatch of the two me
which is minimized if thee value of the external medium lie
betweene1 and e2, and whene1;e2. Under these condi-
tions, the eigenmodes 1 and 2 are excited by waves wh
shear polarization is nearly circular. More precisely, rig
circularly ~RC! and left circularly~LC! polarized waves ex-
cite, respectively, the eigenwaves 1 and 2 in cholesteric
samples with right handed helix. The transmittance and
flectance of samples withea50.1, 2f5p/2, and differentl
values are plotted in Fig. 7. To clarify the role of the twi
defect, we should remind that in the limit of the zero impe
ance mismatch, right handed samples without defects

FIG. 6. uSi j u versusv, whereS is the scattering matrix of the
defect plane, for 2f5p/2. (ai ) uS11u and uS31u, (bi ) uS21u, uS12u,
uS41u anduS32u, (ci ) uS22u anduS42u, where the indices 1 and 3 refe
to the standing waves, 2 and 4 to the propagating ones, the
and dashed lines refer to transmitted and reflected waves, res
tively. The indexi, with i 50,1,2, corresponds to media where th
parameterse1 ,e2 have real parts equal to 1.1 and 0.9, respective
and different imaginary parts: 0 fori 50; 0.531024 for i 51; and
331024 for i 52. The curves plotted in~a0!, ~a1!, ~a2!, and ~b0!
are practically coincident, whereas in~b1! and ~b2! the quantities
uS12u and S32 ~dotted lines! are quite different fromuS21u and S41

~full lines!. Notice the different scales in the vertical axes.
4-5
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thicknessl . l c transmit totally LC waves and reflect R
waves. The curves of Fig. 7~a!, corresponding tol 52p l c ,
are now easily understood. The twist defect plays no role
the RC wave, that vanishes before reaching the defect pl
whereas it reflects the LC wave only in a narrow interval
frequency aroundv0, in agreement with the previousl
found results illustrated in Fig. 6~c0!. Thus, thick samples ac
as frequency filters for circularly polarized waves givin
peaks in reflection and holes in transmission. The presenc
narrow holes in transmission has already been evidence
Ref. @17#, where samples with twist defects are consider
in the framework of a previously developed theory conce
ing a three-layer system@18#.

One may notice that the width of the LC-LC peaks a
holes plotted in Fig. 7~a! and in Fig. 6~c0! are practically
coincident. This is a consequence of the fact that in th
samples the coupling of the defect mode with the exter
radiation field is only due to the nonlocalized compone
The highQ factor of thick samples is a consequence of
fact that the amplitude of such component is very small,
shown in Figs. 3–5. By decreasing the sample thickness
amplitude of the localized component at the boundary pl
increases exponentially. Forł 5p l c its contribution to the
rate of energy loss is nearly equal to the previous one@Fig.
7~b!# and it becomes dominant forl 5p l c/2 @Fig. 7~c!#, thus
greatly decreasing theQ factor and correspondingly increa

FIG. 7. Transmittance~continuous lines! and reflectance~dashed
lines! curves versus the normalized frequencyv for circularly po-
larized waves in samples with elastic anisotropyea50.1, twist
angle 2f5p/2, and different thicknesses:~a! l 52p l c , ~b! l
5p l c , and~c! l 5p l c/2. The sample is immersed within an isotr
pic medium withe51.
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ing the linewidth of peaks and holes. The presence of RC-
peaks and holes in the plots of Figs. 7~b! and 7~c! is evi-
dently due to the fact that the amplitude of the mode 11 at
the defect site is no more negligibly small and such to exc
a defect mode with huge amplitude, in agreement with F
6~a0!. For l , l c it could not be convenient to define th
sample properties on the basis of properties of the de
mode discussed in Sec. IV, which have been found by c
sidering the limit l→`, because in thin samples also th
modesa1

1 andb1
2 must be taken into account. Such prope

ties can be found by considering the scattering propertie
the discontinuity planes and the properties of the eigenmo
16 and 26, or by using methods similar to those of Ref.@5#.

Figure 7~b! shows LC-RC and RC-LC mode conversio
peaks. The height of these peaks depends strongly on
sample parameters. By suitably choosing such parame
the incident energy can be totally converted in the orthogo
polarization state, as shown in Fig. 8~b!.

The possibility to generate a standing wave having hu
energy density around the defect site using weak exte
waves is of great interest for applications concerning non
ear effects.

VI. CONCLUDING REMARKS

We conclude by addressing the following comments.
~i! We considered a helical structure without coupling b

tween longitudinal and transversal deformations. The aco
tic properties of the transversal waves are very similar to
optical properties of cholesteric liquid crystals, which ha
been the object of a great deal of research. In particu
optical RC-RC and LC-LC transmittance and reflectan
curves similar to those shown in Fig. 7 are given in Ref.@6#
without a clear explanation. We gave an explanation of
acoustical effects generated by the twist defect, which sho
have an optical equivalent, as it is evidently expected. To
best of our knowledge, such analysis was given here for
first time. Specifically, we were able to exactly define t

FIG. 8. The same as in Fig. 7, forea50.75, 2f5114°, v
5v0, and l 55l c .
4-6
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TWIST DEFECTS IN HELICAL SONIC STRUCTURES PHYSICAL REVIEW E67, 056624 ~2003!
defect mode, to give a simple equation for the resona
frequency and to thoroughly describe its origin.

~ii ! The defect mode contains a nonlocalized compon
which vanishes in the limit of zero anisotropy or for twi
angles equal to zero orp, that is to say, under the condition
when the twist defect disappears. The presence of a no
calized part is necessary because the vectorsu ands, being
the acoustical equivalent of the electromagnetic vectorE
andH, are not perfectly orthogonal in the considered heli
structures. As a consequence, it is impossible to satisfy
boundary conditions at the defect plane by only taking i
account the exponentially decaying solutions present wi
the frequency gap. In other words, the true control param
for the width of the resonant mode is the angle betweeu
.J

ll,

I

d

05662
e

t,

lo-

l
e

o
in
er

ands, which in the helical structure considered here depe
only on either the anisotropy of the medium or the tw
angle. It is now possible to look for other possible cont
parameters, for acoustical as well as optical applications

~iii ! Our investigation deserves a continuation in ma
directions as those we state now: the optical equivalent of
results addressed here, the analysis of helical systems
coupling between shear and compressional waves, which
expected to exhibit conversion between transversal and
gitudinal modes, the search of new applications, and a m
detailed study of lossy media. Even though many opti
applications of the resonant mode have been already
cussed in the literature, we believe that our analysis is s
to stimulate new research.
oc.
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