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Twist defects in helical sonic structures
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We analyze theoretically both the acoustic wave propagation in periodic media made of anisotropic materials
whose stiffness tensor is uniformly rotating along a given axisind the defect mode produced by twisting
aboutx; one part of the helical structure with respect to the other. Within the Bragg band of the periodic
structure, the twist defect gives rise to a resonant mode that is a superposition of two standing waves: one
localized with expfixs|) dependence centered at the defect and the other extended over the whole sample.
The ratio between the amplitudes of the localized and nonlocalized waves depends sharply on both the twist
angle and the elastic anisotropy, and can assume huge values. The defect mode and the resonancedJfgequency
are defined by fully analytical and very simple expressions. Finally, we discuss how asguadinite sample
acts as a frequency filter for circularly polarized shear waves, whose bandwidth can be changed by many
orders of magnitude by varying the sample thickness, the twist angle, or the elastic anisotropy.

DOI: 10.1103/PhysRevE.67.056624 PACS nunerd2.70.Qs, 61.36-v, 62.65:+k

I. INTRODUCTION shear(transversal and compressionallongitudina) waves
are decoupled. The properties of the defect mode are dis-
The unique optical properties of cholesteric liquid crystalscussed in Sec. 1V, and finally in Sec. V the influence of the
have been the object of intense research during more thaiesence of the twist defect on the transmission and reflec-
one century. In particular, fully analytic and exact solutionstion properties of finite samples is examined.
for the electromagnetic wave propagation along the helix
axis were independgntly fogn_d by Kats and Nityananda Il. EIGENMODES EOR AXIAL PROPAGATION:
[1,2]. These expressions exhibit the presence of a large fre- BASIC EQUATIONS
guency gap, where two of the four eigenwaves are nonpropa-
gating. The advances in deposition techniques have allowed Let us first consider solid helical structures without de-
to fabricate solid crystals having the same structure as chdects, made of anisotropic materials whose elastic tensor ro-
lesteric liquid crystals and to insert defects for photonic aptates uniformly about a given axis, thus describing a helix
plications. The defects can be generated by inserting an isavith pitch p. For axial propagation of the elastic wave it is
tropic layer in the middle of a cholesteric liquid crystal convenient to express the components of the displacement
sample between planes orthogonal to the periodicity direcvector uy and of the stress tenser in a framex;,X,,X3
tion x5 [3] and similarly in solid crystal§4,5], or more sim-  rotating solidly with the material structure. In this frame the
ply by rotating aboutx; one of the two half parts of the components;;,, of the stiffness tensor have constant values
sample with respect to the oth@wist defectd6-9]). and the propagation equation for monochromatic fields of
Solid helical structures made of anisotropic materialsfrequency(), with a time dependence expiQQt), can be
whose elastic tensor is uniformly rotating aboytare also  written as
of interest for sonic applications. Ideal structures without de-
fects have been largely treat¢d0-16, whereas helical dza(Xz) =iqHa(Xa), (1)
structures with defects received smaller attention so far

[17,18. The aim of this paper is the study of the defect hereH is a constant &6 matrix, q=27/p, a is the six-

modes produced by a twist defect in helical structures anvector whose elements are the components of the displace-
their effects on the acoustical properties of finite samples;, P P

Since in helical media the wave equation admits exact an{ent vectorug and the components';s, o3, o3 of the
fully analytical solutions, such structures represent an idea?tress. tensor. It is _c_on\./enlent to introduce the following di-
tool for the exact description and the study of defect modegwensmnless quantities:

in samples with twist defects, yielding a full understanding

of their causes. This paper is organized as follows. In Sec. Il, u=qug, Si=ois/no,

we recall the basic equations for axial propagation in helical

structures given in Ref$10,11]. In Sec. lll, we discuss the and to define the matrid as

properties of the shear eigenmodes in a periodic medium

without defects, by considering helical structures whose (Huu Hus)
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0O 1 0 the same symmetries as hexagonal crystals with the crystal-
lographic axisz parallel tox,, then

0O 0 O eIl: 70N xzx2: 951: no)\xyxya 9371: Nolxxxx- (6)
e, 0 e 1.0 0 By considering lossless media and by setting
iH us= 0 e e’ , iH =" w20 1 0 , o 1 Mozt )\xyxy
. M=5 (M
e e €3 0 0 1 )\xzxz>\xyxy
2 : . ,
@ the relatione, +e,=2 is fulfilled, and we can take
wherei =1,2,3, the parametey, is a suitable average of the e=1+e,, e=1-e,, )

elastic compliance, the elements of the submaitijyx are

dimenSionle.SS quantitidsuc.h quantities will be defined be- Whereea: (el_ez)/z is the anisotropy parameter of interest
low) and  is a reduced, dimensionless, angular frequencyor cholestericlike structures. However, it must be observed

given by the equation that in lossy media the relatioe, +e,=2 is not satisfied
because the imaginary partsefande, do not add to zero.
w=Qpno, 3 Equation(4) is no longer valid if the crystallographic axis

zis obliquely oriented with respect to the helix axig and
wherep is the density of the medium. The propagation equathe structure turns out to be smecticlike. The equations de-
tion admits six independent solutions of the typefmmg the parameterg;, e,, es, e’, € for smecticlike
Biexplakjxs), where the state vector8; and the reduced structures, which are not considered here, are given in Ref.
wave vectors; are the eigenvectors and eigenvaluesdof  [11] with a slightly different symbolism. Propagation equa-

respectively, which define the eigenmodes of the acoustiions equivalent to Eqg$1) and(5) have also been found and
field. It is worthwhile to remind that the simplicity of such discussed in Ref.10].

plane wave solutions is due to the use of the rotating frame
representation. In the laboratory frame the eigenmodes ac- |, PROPERTIES OF THE SHEAR EIGENWAVES IN

quire the .fgrm of Bloch waves Whi_ch can be expressed as a CHOLESTERICLIKE STRUCTURES
superposition of plane waves having reduced wave vectors _ _
(k+ 1);(3, k)‘(3' (k— 1);(3’ as expected for periodic media. The eigenvalues and eigenvectors of Ex).are very eas-

The properties of the eigenmodes and the shape of thi found [10,11]. They are given by the equations
dispersion curves depend on the material parameters, which

. ; . . e, te 1
appear in the submatrid ;. Let us restrict our analysis to K2=1+ ZM +=J/8(e,+ &) i+ (e,—e,)20%
the case 2
9
=€ :0' (4) elsl=iku1—u2, ezszzikU2+U1, (10)
in which the eigenvalue equation splits into two independent 2 2
. . . . UZ elez(x) _el_ezk
equations, since the longitudinal componems s; are de- <= (11

coupled from the transversal ones. The equation containing Uz ik(e;+e;)
u; and s; describes compressional waves, while the other

: For reale values, namely, if the medium is lossless and
represents shear waves and can be written as

locally achiral, the eigenvaluek; are real and given by
+kq, =k, except for values of» within the frequency gap,

0 1 e 0 t U1 wherek; is purely imaginary. The dispersion relations of the
-1 0 0 e||u U, four transversal eigenmodes™11~, 2%, 27 and of the
—w?2 0 0o 1|ls =ik st | ®) longitudinal ones 3 and 3~ are plotted in Fig. 1. Notice that
0 —w? -1 0 only the modes 1 display a frequency gap placed betwgen
® S2 S2 and w,, where
If e;# e,, which means anisotropic behavior of the structure wi=1le;, wi=1le,.

under shear deformation, the transversal components are

coupled. In this paper we shall study the solutions of Bj.  In what follows we shall assune,>0 and as a consequence

which are very similar to those of Maxwell's equations for w,> w1.

axial propagation of the electromagnetic fields in cholesteric Before concluding this section, let us stress some features

liquid crystals. For such a reason the helical structures satiof the eigenmodes which will be useful in our analysis.

fying Eq. (4) have been called cholestericlike in REL1]. Equationg11) and(10) show that the ratios,/u; ands,/s;
Equation(4) is satisfied for a medium having ,x,,X3 as  are purely imaginary for real values &fso that the waves

symmetry axeswe remind that the periodic medium appearspropagating without attenuation are elliptically polarized. In

as homogeneous in the rotating frgmi the medium has contrast, these ratios are real for imaginkrgnd as a result

056624-2



TWIST DEFECTS IN HELICAL SONIC STRUCTURES PHYSICAL REVIEW &7, 056624 (2003

90°

e isf .
)
% 60°
-
S i 1 3
151 o
3
a 30°

0.5k

2+
95 - 05 0 05 1 15 o 0.95 1 105 11
reduced wavevector k ®

FIG. 1. Dispersion curves in the rotating frame for helical struc- 5. 2. Angles¢; with i=u,s, defining the direction of the
tures without coupling between shear and compressional deformgzciorsu ands for the modes T within the frequency gap foe,
tions. The solid and dashed lines refer to the real partk fur =0.2: ¢,=tan }(u,/u;) (continuous ling ¢.=—tan i(s,/s,)
forward_ and backward modes_, re_specyvely; thti dash-dotted an@jashed ling Notice thate, and ¢, are defined in such a way that
dotted lines to the corresponding imaginary parts dnd 2 are at the gap edges, whedg, = ¢., the vectorsi ands are orthogonal.

shear modes and“3compressional modes. In the laboratory frame The nonorthogonality of these vectors within the gap influences
the curves 3 are unchanged. The other ones are shifted along th%trongly the shape and the width of the defect mode.

horizontal axis by+1 or —1 and a new plane wave component

with a different value ok appears, because the eigenmodes in pe-andu s, respectivelv. For each eigenmode. the plane vec-
riodic media are Bloch waves. In the frequency range wheie B gy reSP Y. 9 ' P

purely imaginary the modes™lrepresent surface standing waves. tors u, s defining 8 are obviously rotated by an anglep2

In the presence of coupling between shear and compressiongl\fith respect to those defining.

waves, a new frequency gap appears around the intersection point /N order to define the properties of the defect modes
of the curves T, 3~ and 1-, 3*. within the frequency gap, it is important to consider the

eigenmodesy; andpB; . As a consequence of the properties

- . . B — +
the exponentially attenuated solutions, corresponding t&iSCussed in the preceding section, the vectgrsand ug
standing waves, are linearly polarized. make an angle @ for o= w,, that is, at the upper edge of

At the upper edge of the gap the plane vectorsandu™ the frequency gap. By d_ecr_easing they_rotate in opposite
of the modes 1 and 1~ are parallel to the axig, corre- ~ S€nses, and become coincident for a given axggle corre-
sponding to the minimum value @ By suitably normaliz- SPonding to a well defined frequenay, . Similarly, the vec-
ing the eigenvectors dfl, u* andu™ become coincident for 0rss, ands, become coincident at a frequenay= ws. If
w= w,. By decreasing» from w, to w;, these vectors rotate @s=®y, @ physically acceptable solution is given by
monotonically by an angler/2 with opposite senses of rota-
tion, so that they become antiparallel at the lower edge of the f(Xg) =fa(X3)O(—X3) + T 5(X5) O(X3), (12
gap. Similarly, the vectors™ ands™ are parallel tox, for
w=w,, and rotate byw/2 becoming antiparallel forw
= w4. Such properties of the nonpropagating solutions are of _ - _ ot _
great importance for the search of the possible localized Fal(X3) = @y @XP(YX3),  T5(Xa) =By €XH— ¥Xs), (13
modes within the frequency gap, as we shall see the follow-
ing section, which defines the defect mode in lossless media},:qk1 and® (x) is the Heaviside step function. In fact, the
function f(x3) satisfies the propagation equation and is con-
tinuous at the defect plane, in agreement with the require-
ment of continuity of the vectong ands. The functionf (x5)

Let us now consider two identical semi-infinite cholesteri-defines a localized defect mode occurring at the frequency
clike structures filling the half spaces<0 andx;>0, re- o,=ws, as it is evident.
spectively, the second one rotated by an anglevidth re- For the helical medium studied here, the functiang ¢)
spect to the first one. The eigenvectors at the left and righind w¢(¢) are very close but not coincident, as shown in
hand sides of the discontinuity plane will be indicated withFig. 2 where the inverse functiong,(w) and ¢¢(w) are
the lettersa and B, respectively. plotted. Hence, no physically acceptable solution defining a

For the shear modes 1 and 2 the componegtands;  localized mode exists, since it is impossible to fulfill the
are identically zero. The vectoes and 8 will be written as  requirements of continuity for both vectossands. How-
four-vectors defined by the couples of plane vectoys s,  ever, a solution which is continuous at the site defect can be

where

IV. TWIST DEFECT AND DEFECT MODE
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® FIG. 4. Maximum value oC(w), Co=C(w), as a function of

FIG. 3. Amplitude ratioC(w) between the localized and the the twist angle 2 for e,=0.2.
nonlocalized component of the defect mode for a twist defect with
twist angle 2p==/2 and anisotropy parameteg=0.1. angle 2. For a given value ob, wy is located between the

frequenciesw, and ws. A monotonic dependence af, on

found by adding to each one of the functiohsandfz; a ¢ has already been evidenced in Rf7], which gives the
linear combination of the eigenmodes 2nd 2 . The new transmittance of samples with differedt values. We have
function f(x3) contains four free parameters, which allow to found a fully analytic equation relating, and ¢, which can
satisfy the four boundary conditions for the plane vectors be written as
ands. Symmetry considerations and physical intuition sug-
gest that the amplitudes of the counterpropagating modes 2 2¢p=m—y— ¢s, (17
and 2° have the same modulus leading as a result to a stand-h
ing wave. Indeed, for any» within the frequency gap a where
solution exists which can be expressed by the following
functions: p,=tan !

elezwg— el_ ezk%
2ik, ’

f o= Cay exp yXs)+exp —id)a,; expigkyXs)
e, iky—tandg,

e_l ik;tang,+1

+exp(i ) a, exp(—igkyxs), ps=—tan - (18
f 5= CBy exp(— yx3) +exp(i 6) B; exp(igkyXs) Herek, is the function ofw, defined by the dispersion rela-
e _ r tion (9). The maximum valueC,=C(w,) of the function
Texp(—i0) B, expl —ikaXs), (14 C(w) depends on the twist anglef2and on the elastic an-
where the phase angfedepends on the normalization of the 1SOrOPY €, @s shown in Figs. 4 and 5, respectively. One
eigenvectors. The eigenvectais and 8, have been nor-
malized to unit power flusP, which is given by

600 T T T T

0 0 —-iw O 500
P=8"MB |\/|=E 0o 90 e (15)
’ 2lio 0 O 0 ' 400
0 iw 0 0 o

300
where the superscript T denotes the Hermitian conjugation
The eigenmodey, , which represents a standing wave with |
P=0, has been normalized by setting

l(a])Ma|=1, (16) 100
and similarly for3; . The amplitudeC of the localized com- 0 , , :
ponent of the defect mode depends strongly«onin fact, 0.1 03, 05 0.7 0.9
the functionC(w), depicted in Fig. 3, exhibits an enhanced ¢
maximum at a frequency=w, depending on the twist FIG. 5. C, versuse, for a twist angle 2b= /2.
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may notice thatC, increases dramatically whew, ap- x 10° 800
proaches to the gap edges and w,, or when the elastic 6 a0 bo
anisotropye, decreases. —
@
V. PROPERTIES OF SAMPLES WITH TWIST DEFECTS 1 0

A finite sample between the plangs=—1, andx;=1,, 6"105 800
with a twist defect located at;=0, behaves as a resonant al Sy
cavity whose properties dependgn 1,, ¢, ande,. TheQ = o
factor and the phonon dwell time can reach very high values A
by appropriately choosing such parameters. 0

In order to analyze the properties of the sample, it is con-  , 4¢°
venient to express the acoustic fields within and outside the € 800
sample as a superposition of eigenmodes so that we ca__ a2 b2
make use of the scattering-matrix formalism. We considera’|
first the scattering matrix associated with the defect plane. It N L e e
can be defined by the relation 10034 ) 1.0042 %0032 o 10042 oo © 10042

Aout=Sanc, (19 FIG. 6. |S;| versusw, whereSiis the scattering matrix of the

defect plane, for =m/2. (d) |Sy and|Ssl, (bi) [Szl, [Sid,
wherea,, anday, are four-vectors whose elements are the|s, ' and|s,,|, (di) |S,,| and|Sy,l, where the indices 1 and 3 refer

amplitudes of the outgoing and incoming eigenwaves, whichg the standing waves, 2 and 4 to the propagating ones, the solid
will be ordered as followsB; , B; , a1 , a; anday , a; , and dashed lines refer to transmitted and reflected waves, respec-
B1 . B, , respectively. Thus, the eleme8t, provides the tively. The indexi, with i=0,1,2, corresponds to media where the
amplitude of the modeg; generated by an incident signal parameter®; e, have real parts equal to 1.1 and 0.9, respectively,
entering from the left hand side of the defect plane and conand different imaginary parts: 0 fér=0; 0.5<10"* for i=1; and
taining the unit amplitude mode; . In general, the ele- 3%10 *for i=2. The curves plotted ifa0), (a2, (a2, and (b0)
mentsS; with j=1,2 furish the transmission properties of are practically commd_ent, Wheregs Gb_l) and (b2) the quantities

the defect plane when=1,2 and the reflection properties |S: and S5, (dotted lines are quite different ”Omszﬂ and Sy
wheni =34, for waves coming from the left hand side. The (full lines). Notice the different scales in the vertical axes.
quantities|S;;| are plotted in Fig. 6 as a function of. The
upper curves refer to a lossless mediu@an) refers to the
standing waves 1, giving its transmissian=(j=1) and re-
flection (=3, j=1) properties(c0) refers to the propagat-
ing waves 2(b0) to the mode exchanging. Note that the two
curves plotted ina0 are practically coincident and reach a
remarkable maximum at the resonant frequengy showing
that for o=w, the wave 1" gives rise to new transmitted
and reflected waves™ with huge amplitude. A similar be-
havior is displayed by the curves plotted(b0), but here the
maximum is less pronounced. The dashed curve(cid)
shows that the defect plane reflects totally the propagatings its characteristic length. On the basis of the above consid-

amplitude and that the exponentially decaying eigenwaves
are much more efficient than the propagating ones in gener-
ating the resonant defect mode. However, it should be ob-
served that the attenuated wavé 1s originated at the
sample boundarg= —1, and vanishes before reaching the
defect site ifl ;>1., where

_ p
= 1:—
Ic (qkl) 27T|k1|

eigenmode 2 at the frequencyo,. erations, it is now quite easy to understand the reflection and
The other curves (&, (bi), and (¢) (i=1,2) plotted in  transmission properties of finite samples without dissipation.
Fig. 6 are similarly defined, but they refer to lossy media.We shall consider a sample with=1,=1, immersed in an

One may notice that a very small imaginary parepfande,  isotropic medium. The polarization properties of the trans-
has dramatic effects on the scattering properties of the defeatitted and reflected waves at the boundary plarves-| and
plane. The dissipation also changes the properties of the=| depend on the impedance mismatch of the two media,
eigenmodes %, which become elliptically polarized because which is minimized if thee value of the external medium lies
in Egs. (10) and (11) the reduced eigenvalueis no more betweene; ande,, and whene;~e,. Under these condi-
purely imaginary. Further, also the eigenmodés&come tions, the eigenmodes 1 and 2 are excited by waves whose
exponentially attenuated, a fact that can greatly change thghear polarization is nearly circular. More precisely, right
properties of thick samples. However, the optical propertie<ircularly (RC) and left circularly(LC) polarized waves ex-
of dissipative samples with a twist defect are dominated bycite, respectively, the eigenwaves 1 and 2 in cholestericlike
the effects shown in Fig. 6. A satisfactory theory includingsamples with right handed helix. The transmittance and re-
dissipation becomes very involved. Therefore in the follow-flectance of samples wite,=0.1, 2¢p= /2, and different
ing only nondissipative samples will be considered. values are plotted in Fig. 7. To clarify the role of the twist
The curves plotted in Fig. 6 imply that any incident wave defect, we should remind that in the limit of the zero imped-
on the discontinuity plane generates a defect mode with largance mismatch, right handed samples without defects and
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2
Z 06 0.6 . . .
5 04| PO RO-LO ol ing the linewidth of peaks and holes. The presence of RC-RC
CH ) peaks and holes in the plots of Figgb)and 7c) is evi-
02 op——=—=—=aa | 02 dently due to the fact that the amplitude of the modeat
0 ! op-——--——-- the defect site is no more negligibly small and such to excite
096 1 @ 1.04 1 ® 096 1 ¢ 1.04

a defect mode with huge amplitude, in agreement with Fig.

FIG. 7. Transmittancécontinuous linesand reflectancédashed 6(a0).| For |<|°t. I COUI?h no; b_e C(;nvenlentt_ o dfe:‘;]ne dthfe ¢
lines) curves versus the normalized frequeneyfor circularly po- sar‘gp %_properées on the ash|§ r:)hpropsr |esfo deb erec
larized waves in samples with elastic anisotrogy=0.1, twist mode discussed in Sec. IV, which have been found by con-

angle 2p=m/2, and different thicknessesa) |=2ml,, (b) | sidering the limitl —o°, because in thin samples also the
=ml,, and(c) | == /2. The sample is immersed within an isotro- Modesa; andB; must be taken into account. Such proper-
pic medium withe=1. ties can be found by considering the scattering properties of

the discontinuity planes and the properties of the eigenmodes
thicknessl>1. transmit totally LC waves and reflect RC 1—Fa_md 2, gr b% usm%én;tgodsdsgga[éo th%se of REB]'.
waves. The curves of Fig.(@, corresponding td=2l, ll(gur_le_h?( )hs' (;]\f[vsf th- an K d- n?jO etcon\1er5|onth
are now easily understood. The twist defect plays no role foP®a SI N e'% 0 B ese_t pt?la Sh epends s Longy ont e
the RC wave, that vanishes before reaching the defect plan amplé parameters. by suilably choosing such parameters
whereas it reflects the LC wave only in a narrow interval of N qugnt energy can be tot'ally.converted in the orthogonal
frequency aroundwg, in agreement with the previously pol_lfi\rr:zatlon _sg_?tte,tas showrl[ In F'%'bad. havina h
found results illustrated in Fig.(60). Thus, thick samples act N %OSS'.t' ity fo ggntirag ? stan_tlng wave a\limgt ugel
as frequency filters for circularly polarized waves giving energy density aroun € detect site using weak externa
peaks in reflection and holes in transmission. The presence gfaves is of great interest for applications concerning nonlin-
narrow holes in transmission has already been evidenced R’ effects.
Ref. [17], where samples with twist defects are considered,
in the framework of a previously developed theory concern-

. VI. CONCLUDING REMARKS
ing a three-layer systefi8].

One may notice that the width of the LC-LC peaks and We conclude by addressing the following comments.
holes plotted in Fig. @& and in Fig. &c0) are practically (i) We considered a helical structure without coupling be-

coincident. This is a consequence of the fact that in thickween longitudinal and transversal deformations. The acous-
samples the coupling of the defect mode with the externalic properties of the transversal waves are very similar to the
radiation field is only due to the nonlocalized component.optical properties of cholesteric liquid crystals, which have
The highQ factor of thick samples is a consequence of thebeen the object of a great deal of research. In particular,
fact that the amplitude of such component is very small, asptical RC-RC and LC-LC transmittance and reflectance
shown in Figs. 3—5. By decreasing the sample thickness theurves similar to those shown in Fig. 7 are given in R6f.
amplitude of the localized component at the boundary planevithout a clear explanation. We gave an explanation of the
increases exponentially. Fér= 1l its contribution to the acoustical effects generated by the twist defect, which should
rate of energy loss is nearly equal to the previous [#fig.  have an optical equivalent, as it is evidently expected. To the
7(b)] and it becomes dominant for 77l /2 [Fig. 7(c)], thus  best of our knowledge, such analysis was given here for the
greatly decreasing th@ factor and correspondingly increas- first time. Specifically, we were able to exactly define the
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defect mode, to give a simple equation for the resonanc@nds, which in the helical structure considered here depends
frequency and to thoroughly describe its origin. only on either the anisotropy of the medium or the twist

(if) The defect mode contains a nonlocalized componentangle. It is now possible to look for other possible control
which vanishes in the limit of zero anisotropy or for twist parameters, for acoustical as well as optical applications.
angles equal to zero ar, that is to say, under the conditions  (iii) Our investigation deserves a continuation in many
when the twist defect disappears. The presence of a nonlelirections as those we state now: the optical equivalent of the
calized part is necessary because the veaiaaads, being results addressed here, the analysis of helical systems with
the acoustical equivalent of the electromagnetic veckbrs coupling between shear and compressional waves, which are
andH, are not perfectly orthogonal in the considered helicalexpected to exhibit conversion between transversal and lon-
structures. As a consequence, it is impossible to satisfy thgitudinal modes, the search of new applications, and a more
boundary conditions at the defect plane by only taking intodetailed study of lossy media. Even though many optical
account the exponentially decaying solutions present withirapplications of the resonant mode have been already dis-
the frequency gap. In other words, the true control parameteatussed in the literature, we believe that our analysis is such
for the width of the resonant mode is the angle between to stimulate new research.
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